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1. INTRODUCTION

During an encounter with an atom, an electron may emit (Bremsstrahlung) or absorb (in-
verse Bremsstrahlung) a photon in a manner that the atom is not affected energetically. Such
free-free transitions of electrons are important source of emission and absorption processes
in the stellar atomospheres and the low-temperature plasmas [1-3].

The free-free transitions with the neutral atomic oxygen as a host have been studied
theoretically by several groups [4-7]. Since the free-free transitions assume a particular
importance at low-incident electron energies, usually below the first excitation threshold,
the target polarization is an important factor to consider in the theoretical calculation.
Thus, in the work of Mjolsness and Ruppel [4] and of Geltman [5] an empirical polarization
potential is included in the calculation of the continuum wave functions. John [6] obtained
the absorption coefficients from the momentum-change cross sections by means of a formula
suggested by Dalgarno and Lane [8]. Later John and Williams [7] adopted the multichannel
theory of Morgan and John [9] to calculate the absorption coefficients, utilizing the results
of a three-state close-coupling calculation of the electron-atom scattering [10].

In this work we account for the target polarization by means of the method of polarized
orbitals which Temkin [11] devised to study the e-O scattering and later extended to the
e-H problem [12]. Henry has also applied this method to study the elastic scattering of the
e-O system and photodetachment from O~ [13]. In the polarized-orbitals method, the target
polarization is made a part of the atomic wave functions which depend parametrically on
the incident-electron coordinates. The polarized orbitals in turn present the (polarization)
potential to the scattering electron. Thus, we are in a position to compare the results based
on three different ways of handling the target polarization - by the empirical polarization
potential, by the multi-state close-coupling, and by the method of polarized orbitals.

In Sec. 2, we briefly discuss the basic formulation of free-free absorption and emission

coefficients, and describe the method by which the free-electron functions are obtained. The




polarized-orbitals method of Temkin, from which the polarization potentials are derived, is
described in Sec. 3. Ashort description of the numerical procedure is contained in Sec.
4. InSec.5, we compare our results with the previous works in some detail, particularly
with the work of John and Williams [7], since our approach and theirs may be viewed as

complementary. Section 6 concludes this report.

2. THEORY

2.1 Absorption and Emission Coefficients

We study the free-freg transition process
e"(k:) + 0(2p* °P) — e (y) + O(2p* °P) % how, (1)

in which a photon is emitted (+%w) or absorbed (-Aw). The conservation of energy gives the

relationship
(kih)® _ (kgh)?

2m 2m

+ hw. (2)

It is appropriate to construct the wave functions of the (e~+0) system that are eigenfunctions
of the total orbital (L) and spin (S) angular momenta if we neglect the spin-orbit interaction.

Then the transitions of interest are of the type
[2p*(S1L1)k:ilSL) — [2p*(S1L1)ks€' SL], : (3)

where S;=L,=1 for the 3P state, and (£, £') are the partial waves of the incident and scattered
electrons. The dipole matrix elements for the above transition have been worked out [16).

Using these results the formula for the absorption cross sections o,p,[1,2] can be generalized,

viz.,
256m%a a?
abs ki A ) = s M? 4
where a is the fine-structure constant,
AR = [k - K2, ()
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25 +1) (2L +1)(2L' +1) , LIS }
M=yt ( W2(LLOL L) | MEES P . (6
%,: >{s§ 2(25: +1) (2L +1) ( 11)IMz; ()

In the above £ is the greater of £ and £ and W is the Racah coefficient, and

' e dv(r '
MEs = [ Pﬁf(r)—%—z PES (r)ar, (7)

where r~1P£5(r) is the radial part of the continuum function of the free electron and V(z) is
the potential seen by the free electron. If the dependency of Mf"ff's on (L,L’,S) is suppressed,
the quantity inside the curly bracked in Eq. (6) reduces to M}, so that Eq. (4) reverts back
to Eq. (6) of Ref. [2].

The (mean) absorption coefficient is obtained by averaging the cross sections over the

Maxwellian distribution function f(v,T) corresponding to the electron temperature T, viz.

SONT) = 7 canlhey AK)f (v, T)dvs, 8)
where
, 4 m \3/? mv?) ,
f(v,T)dv = —\/—1_; (Eﬁ) exp (—%)v dv, (9)
= 198.00%2ezp(—31.3296 k?)k; d(k?), (10)
with
© = 5040/T(K), (11)
so that
5.05 X 1073°Q%/2 (o ezp(—31.3296k%)
A = 1 2 2 .
KA T) . T M) (12)
The wavelength A and Ak? are related as
MA) = 911.8/Ak*(a.u.). (13)

The cross sections in Eq.(4) are expressible in units of cm®[1] after a substitution of

a, = 0.529x108%cm, so that the absorption coefficients in Eq. (12) are also in units of




cm®. The absorption cross sections and coefficients are frequently multiplied by the electron

density n that would give rise to a pressure of 1 dyne/cm? at temperature T,
n(em™3) = 0.724 x 10'°/T(K) (14)

per dyne/cm? [1] so that the cross sections and coefficients are now expres;sible in cm*/dyne.
The photons involved in the aBsorption also induce emission so that the absorption coef-
ficients are sometimes multiplied by a factor [l-exp(-hv/kT)] [1]. In this paper we do not
include this factor unless specifically stated otherwise.

The expression of the emission cross sections has been given in Refs.[4,5]. However, a
more pertinent quantity in applications is the emissivity in units of W-cm®/pm-steradian

[5], which we found to be

0.794814 x 10-3 . ro exp(~31.3206 k2) ., ,
TANT) = SO /[ W M), (15)
where v, is the threshold velocity of the free electron for emission, i.e.,
—21-va = hw (16)

and the symbol A(gm) indicates that A is to be expressed in pm. The emissivity in this work

was computed by Eq. (15). Geltman [5] also gave the relationship

_ L19x 100 1439 x10%)
J(\,T) = BomF p( )T ) (A1), (an

which can be used to check the consistency between Eqs.(12) and (15).

2.2 Free Electron Function P (x)

The reduced radial function PLS(r) is obtained as the solution of the integro-differential

equation
[d2 Le+1) L L 2| pLs
T T T Veou(r) = Voulr) + k*| B (7)
= ) WhinxtPre(r) + 3 601CrttPrrs(r), (18)
n'l'\ n't




where V,,, and VX, are the Coulomb potential due to the unperturbed atomic orbitals and
the polarization correction (to be discussed in Sec.3) respectively.  The first term on the
RHS is the exchange interaction term and the second term is to ensure the orthogonality
with the bound atomic orbitals P,.. The dependency on the angular momenta L and § is

indicated as superscripts.

With regard to the present problem of O~ [15?2s?2p*(* P)k£ **L], the unperturbed orbitals

of the oxygen atom are
Frtm(7) = Yim (F)rPrs(r), (19)
and the Coulomb potential is
Z
VE (P = 2{ - + 2y,(1s,1s|r) + 2y,(2s,2s]r)
1
+ 4y.(2p, 2pl7) + gvfyz(2p,2plr)} ; (20)

where Z is the nuclear charge, and
y,\(nl,n'l’|r) = M1 /" 'Pnz(t)'Pnllr(t)t'\dt
+ [ Padt)Pun (), (21)

and vF is equal to £/(2¢+3), - 1, and (£+1)/(2¢ - 1) for L=£+1, £, £ - 1 respectively.

The exchange terms are

1
> WrﬁtS’A.kl(r)Pﬂ’l'(r) = 2{- ye(1s, k€|7)P1,(r)
20 4+1

n'A

1
s7 T TYA2e BN Pau(r) + witrye (2, KLUr)Pay()
+ wiSye1(2p, kr)Pap(r)}s (22)
where y,(nl, k£]r) can be obtained from Eq.(21) by substituting P{7(t) for Pure(t).

The coefficients wk® are shown in Table 1. Throughout the work, we have used the wave

functions of Clementi and Roetti [17] for the unperturbed orbitals. Finally, Eq. (18) is to

be solved subject to the boundary condition,
lim PLE3(r) = sin(kr — %lw + 75), (23)

6




where 7} is the phase shift due to interaction with the atom.

Determination of the polarization potential VI, (r) in Eq.(18) will be taken up in Sec. 3.
At this point we should note that if we drop the V1, (r) term, then Eq.(18) becomes a “one-
channel” closing-coupling equation obtainable by omitting all coupling terms connecting the
different partial waves and the various target-atom states. The polarization potential may
be viewed as a way to account for the effects of the omitted channels on the free-electron
wave function. This may be contrasted with the work of John and Williams [7] in which they
used the results of a three-state close-coupling calculation with no explicit introduction of
the polarization potential as the inclusion of the coupling channels in their work is another

way to allow for the target polarization.

3. METHOD OF POLARIZED ORBITALS

In this section we briefly recall the essential steps in Temkin’s method of polarized orbitals
[11], ultimately leading to the polarization potential V[ (r) in Eq. (18). The details are
found in the works of Temkin and others [11-13]. Here the distortion of the target atom
caused by the perturbation of the free electron at 74, is treated in an adiabatic, dipole
approximation with the proviso that the perturbing electron is outside the atomic electrons.

Thus the perturbation is taken as

4 1 X ! . R
B = (_3—) 7 2 Tie(rismvea) D Yiu(f)Yiu(Faa), (24)
TN+1 i=1 pu=-1
1 2>
e(riyrN41) = { 0: ';: :Z:i < :,., (25)

To construct the wave function of O(*P) we start with the unperturbed one-electron functions
of the oxygen atom [17] as shown in Eq.(19). Following Temkin we add a polarization
correction to each ¢2, to form a polarized orbital which depends parametrically on T4, as

¢nlm(7:.) FN+1) = qS?;lm(F) + A¢f$‘m(;‘" FN'H)? (26)
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2GS (7 7na1) = €(ry 1) D Yimem! (Fiv41)Bntm e (T)- (27)

It is convenient to define ""'
G (7) = et — )Yl Potmsoms (1), (28)
where
(tm — 'm') = 2(-1)™ ™ 4m(2e+1) 1) v c(1m' —m £ m;€m')c(10£0;£0). (29)

(2[’
In the above c(jym;j;mgz;jm) is the Clebsch-Gordan coeffient; thus, we see that |/ - £|]=1 and
|m' — m|=0,1.

The radial function Potm—trme(r) is obtained as the solution of the differential equation

2 Ul +1
3;2- - —KT—Z Coul(r) + Enl] Pnlm—d’m'(r) = z W,I;n[/l,\,['m’(T)Pnlm—ol'm'(r)
15N
+ Z Sln’zlcnulupnutu(r)
nitgt
+ 7Pne(r). (30)

Here the Coulomb (V%,,) and exchange (W’) potentials are obtainable by subjecting to
the Hartree-Fock procedure the determinantal wave functions in which the parent orbitals
#2,..(F) are replaced by the polarized version of Eq. (26). The function Ppm—sme(r) ap-

proaches zero as r — oo, and for small r
. 41
P_IH)Pnlm—Ol’m’(r) =ar’ ™t (31)

In this work we have obtained the P,/n_um functions associated with the unperturbed
orbitals nf=2s and 2p. For later reference, they are listed in Table 2, and are referred to
simply as P; therein. From these polarized orbitals we obtained the dipole polrizability of
5.084 a2 compared with the experimental value of 5.24:0.4 [18]. Other theoretical values
range from 4.63 to 5.41 [19]. In general the polarized orbitals P,tm—sm depends on m and

m’ as well as on £ and £ due to the difference in exchange term in Eq. (30) so that only two




pairs are identical among the fifteen functions in Table 2; that is, P5 and Ps, and Py and
P;,. This dependency on m and m’ manifests itself, for example, in the calculation of dipole
polrizability in which a difference up to 20% is found in the matrix elements.

When the target wave functions are described by the unperturbed orbitals ¢°, the
Coulomb potential V&_,(r) seen by the free electron (coordinate ), consists of constituent

terms due to all occupied n'f’-orbitals such as
() = [ Y P e F)IF = 717 650 (5 e (7 ) i (32)

As a consequence of the polarization of the n'#’-orbital, augmentation of the target orbitals by
the polarization correction A%, in accordance with Eqs. (26) and (27) produces additional

(polarization) terms, to the first order in A, of the form

Sttt (r) = [ Vi P e )7 = 717 65507 Wt s 7 Y . (33)

The polarization potentials associated with the Coulomb interaction which can be derived
variationally [11] are composed of a series of such integrals, and can be cast into the general

form
VA() = =5 S CiFun(®) [ Pile)Paae)at (34)
The notation used here requires some ;xplanation. We have a summation over j which ranges
from 1 to 15 for L=£+1, 1 to 21 for L={, and 1 to 31 for L=£-1 as shown in Table3. For
each value of j, we also list C;, u(j), P;, and B(j) in Table. 3 for the three possible choices
of L={+1, ¢, and £-1. To identify Pg;) let us take an example of, say, j=5 with L={+1. The
associated B(j) is 7 according to Table3. We then go to the entry of i=7 in Table2 and
find that Pp(;_s) is P2p,12,2. From Table 4, we find Fy(;) for each j in a similar way. P;
is the reduced radial function of the unperturbed target orbitals as defined in Eq.(19) with
P; = P, for j<3 and P;=P,, for j>3.
The exchange potential is also modified by the inclusion of polarization. The effects of

the polarization on the exchange term have been examined by Henry [13] in his work on the

9




elastic scattering of electron from the oxygen atom. The inclusion of this exchange term was
found to change the s-wave (£=0) cross sections by only 10%. For the higher partial waves
(¢ >0), the difference is even smaller (4%) so that the influence of the polarization of the
orbitals via exchange is seen to be rather marginal. For this reason, we do not consider in

this paper the polarization correction on the electron exchange.

4. NUMERICAL PROCEDURES

The integro-differential equations of Egs. (18) and (30) are solved non-iteratively by using
the Lagrange-multiplier technique as we have done previously [20]. The inhomogeneity terms,
which arise due to the electron exchange, orthogonality, and perturbation, are set to zero
after r=13.5 a,. This corresponds to the r value at which 2p function has decreased to 10~°
of its peak value. At this point the Lagrange multipliers are determined, and the complete
solution is constructed as a linear combination of the paritcular integrals and homogeneous
solution. Beyond r=13.5 a, Eqs. (18) and (30) are considered to be homogeneous differential
equations.

For the free-electron functions, the phase shift 7 is determined at various points 50 to
250a, apart starting at 450a,, until two successive values agree within 0.01%. To solve for
the polarization correction functions of Eq. (30), the numerical solution is first initiated
with a certain arbitrary value of a in Eq. (31). The resulting solution obtained by numerical
integration in general would diverge at large r, say, tending to +oo as r— oco. The value of a
used here is denoted by a,. We then change the value of a until the resulting solution tends
to -0o at large r, and this new choice of a is denoted by a_. By successive interpolation
between a; and a_, we develop a numerical solution for Puym—em/(r) that monotonically

decreases up to r=20a,.
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The dipole matrix elements are computed by the velocity form instead of the acceleration
form shown in Eq. (7). The length and acceleration forms may be derived from and is

equivalent to the velocity form if the wave functions are exact eigenfunctions of the atomic

Hamiltonian. Using a short-hand notation of ¥ = (LSk£), we have

azgs = BE)e 2 p )[ LBl "}P (r)dr, (35)

where £5 is the greater of £ and £. The limits of integral (0,00) is divided into two regions
(0,R) and (R,00) where R is the value of r at which the asymptotic form of Eq. (22) sets in.
The integration in the interval (0,R) is carried out numerically. For the interval (R,00), the
integrals are expressed in closed forms analogous to those given in Ref. [21].

Using our computational procedures, we obtain virtually identical results for various en-
tries in Tables 3 and § of Ref. [2]. In these calculations the difference between the velocity

and acceleration forms was typically 1.5% or less.

S. RESULTS

In Eq. (6) we have L; = S;=1 for the present problem (*P ground state of O atom),
and S takes on 1/2 and 3/2. We have also set the limit of (£,£') <4, and (L, L') to all
values consistent with (£,£'). For a given value of the wavelength A (equivalently, of Ak?),
we have computed the cross sections at 200 different values of incident-electron energy from
0 to 1.2 a.u. as shown in Table5. The process of averaging over the Maxwell-Boltzmann
distribution in Egs. (12) and (15) was carried out by interpolating between these 200 points.
The resulting continuous absorption coefficients in Eq. (12) are shown in Table 6 and
emissivity coefficients of Eq. (15) in Table 7.

Geltman [5] made an extensive calculation of the free-free absorption coefficients for a

number of neutral-atom systems including the oxygen atom. A Hartree-Fock-Slater-type
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potential was used to describe the Coulomb and exchange interaction of the free electron
with the neutral atom, and an empirical polarization potential was added. The matrix
elements are then evaluated in the acceleration form. At 10,000K, Geltman’s values are 25-
30% smaller than our values as shown in Table 8. A more detailed comparison of Table 4
of Ref. [5] and Table 6 of the present report shows that the coefficients in Ref. [5] are smaller
than the present values at the. lower electron temperatures and longer wavelengths of the
absorbed photon. At higher temperatures the difference becomes smaller and at 20,000K the
two sets are nearly identical. John [6] derived the free-free ab.sorption coeflicients involving
various atoms and molecules from the momentume-loss cross sections
by means of the formula suggested by Dalgarno and Lane [8]. The data of John for oxygen
[6] are reported to be in good agreement with those of Geltman (5], particularly for A > 1.0p.
‘A new and refined theoretical treatment was subsequently offered by John and Williams
[7] in which they applied the multichannel theory [9] to obtain the free-free absorption
coefficients for the e-O scattering system. For the continuﬁm orbitals they used the scattering
data from the three-state (3P, !D, IS of the ground configuration) close-coupling calculation
of Saraph [10]. The bound states were described by the three-configuration wave functions.
In Table8,we  compare their absorption coeflicients at 9,700K, computed by the velocity
form, with ours at 10,000K. In making this comparison two points should be mentioned.
First, we estimate our absorption coefficients at 9,700K to be only about 3% smaller than the
ones at 10,000K shown in Table 8. Secondly, the coefficients of John and Williams contain
the contributions from cases other than the oxygen atom being in the ground 3P state before
and after the collision. However, the 3P-3P contribution is expected to occupy greater than
90% of the total at 9,700K, since its percentage is 90% at 12,600K and 99% at 5,040K (See
Table 3 of Ref. [7]). Thus, even after accounting for the other contributions, the absorption
coefficients of this work and of Ref. [7] differ by no more than 10% at 10,000K. In Table 5
of Ref. [7], John and Williams also give the absorption coefficients that include the factor

for the stimulated emission. In Table 8 of this report we include their values at 5,040K,

12




adjusted so as to exclude the stimulated-emission factor and to be expressible in units of cm®.
These values are seen to be about 10% smaller than our interpolated counterparts at 5,000K.
Thus, the agreement is quite good. Futhermore, the percentage difference is about the same
over a wide range of A and at two different electron temperatures. This is encouraging
and significant, because the two formalisms - the close-coupling method and the method of
polarized orbitals - offer different approaches to allow for the effect of target polarization in
a slow-electron-atom collision. This agreement may be contrasted with the comparison of
the present calculation with that of Ref. [5], in which not only greater differences are found,
but also the differences depend on A and T.

From a shock-heated plasma experiment Taylor and Caledonia [14] obtained the absorp-
tion coefficients, which are shown in Table 8 as “Expt”. In a similar experiment Kung
and Chang [15] found the absorption coefficients of 7.8 x 10738 and 3 x 10~%cm® for A =
3.1 and 9.85u respectively, both at the electron temperature of 9700K. Those experimental
values are about 2 to 3 times larger than the present values and those of Ref. [7]. Beyond the
obvious difficulties associated with the experiments that are discussed in Refs. [14] and [15],

we can offer no clear explanation for the discrepancy between the experiment and theory.

6. CONCLUSIONS

In an electron-atom collision the polarization of the target atom is an important and
yet difficult feature to incorporate into the theoretical formalism. The multi-channel close-
coupling method is one of the major theoretical tools that allow for the distortion of the
target by the incident electron. In this paper we apéroached the same problem of the target
polarization with the method of polarized orbitals. We found that this method gives the
dipole polarizability of 5.084 a3 that is quite comparable to the range of values 4.63 to 5.41
by other calculations [19].

13




With respect to the free-free absorption coefficients our values show very good agreement
(about 10%) with the results of John and Williams (7] based on the scattering data from
a three-state close-coupling calculation. This agreement is significant in view of the very
different nature between our approach and that of John and Williams. On the other hand
the theoretical absorption coefficients are smaller by a factor of about two or three compared
to the experimental values, and we are not able to reconcile this discrepancy at the present

time.
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Table 1. Values of w}’ in Eq. (21).

wkS
S L A=L+1 A=£(-1
L+1
3 -{l- __ 3 3t
2 (2t+1) (2t13) (20-1)(2t+1)
L-1 |
34(24+5) ' 3t
% L+1 2(24+1)(2£43)2 “(2t-1)(2t41)
1 ] 3(¢-2) 3(¢4+3)
2 2(2L+1)(24+3) 2(2¢-1)(2441)
1 (-1 3(L+1) 3(2£-3)(£+1)
2 - “(t41)(2t43) 2(2-1)?(2t41)

Table 2. Polarized corrections P ¢'m' that are equivalently

nfm —

referred to simply as P;.

i ném—l,m i né,m —&,m'
1 250 1,1 9 9p,1 2,0
2 25,0 1,0 10 2p,0 2,1

3 2,0 1,1 11 20,0 2,0
4 2p,1 0,0 12 2p,0 2,1
5 2p,0 0,0 13 2p,-1 2,0
6 2p,-1 0,0 14 2p,-1 2,1
7 2p,1 2,2 15 2p,-1 2,2
8 2p,1 2,1

15




Table 3. List of constituent parts that describe the

polarization potential V5, (r) in Eq. (34).

16

i C; u(j) P; B(j)
L={+1
1 4/3 1 2s 1
2 4/3 2 2s 2
3 4/3 1 2s 3
4 4/3 1 2p 4
5 8/5 1 2p 7
6 4/5 2 2p 8
7 4/15 1 2p 9
8 2/3 2 2p 5
9 2/5 1 2p 10
10 8/15 2 2p 11
11 2/5 1 2p 12
12 2/3 1 2p 6
13 2/15 1 2p 13
14 2/5 2 2p 14
15 4/5 1 2p 15
L=t
1 4/3 3 2s 1
2 4/3 4 2 2




10

11

12

13

14

15

16

17

18

19

20

21

4/3

2/3
4/5
2/5
2/15
2/3
2/5
8/15
2/5
2/3
2/15
2/5

4/5

2/3
-2/5
4/15
-2/3
-2/5

4/15

4/3

4/3

L={-1

10

11

17

2s

2s

Table 3 (2nd page)

10
11

12

13
14

15

10

11




10
11
12
13
14
15
16
17
18
19
20
21
22

23

4/3

2/3
4/5
2/5
2/15
2/3
2/5
8/15
2/5
2/3
2/15
2/5

4/5
2/3
2/5
4/15
2/3
2/5
4/15
4/3

4/15

10

12

12

13

12

14

15

14

15

16

16

17

16

18

18

18

18

18

18

19

19

18

Table 3 (3rd page)

2s

10

11

12

13

14

15

10

11

13




24
25
26
27
28
29
30

31

4/3
4/15
2/3
-4/15
2/5
2/3
-4/15

2/5

19

19

20

20

20

20

20

20

Table 3 (4th page)

13

14

11

12
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Table 4. The {-dependent function Fy({) in the

polarization potential V4 (r) in Eq. (34).

i Fi(£) i Fi(¢)

1 (£41) 11 2024202
(26+3) (20-1)(2£+1)

9 1 12 (4244403 -3 —41+6)
(2t+3) L(20-1)(2L+1)(2L43)

3 L2442 13 (463482 4-92-15)
(¢+1)(2t43) (20-1)(2L+1)(24+3)

4 43 14 (4434202 -13(-3)
(+1)(2t43) 2(2¢-1)(24+1)(2¢+3)

5 L{L+3 15 (4[‘ +8l3 -9£2 +3)
@+1)(2t+3) 2(22-1)(24+1)(2L43)

6 £+6 16 (8£44+4£3 —8£243)
G (2t+3) (20=1)(28+1)(24+3)

1 863 4+4L2 -6
7 £+1) 17 1(2151)(21-;-1 ) (2)l+3)
L 2¢—3
8 (¢+1) 18 (2241)(2¢+3)
L 1

9 (¢+1)(2¢43) 19 (2¢41)(2¢43)

10 (28 -£—141) 20 20—1
(22-1)(2¢41) (26+1)(2¢43)
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Table 5. Quadrature of the incident-electron energy k? in a.u.

For each region k3 runs from k% in increments of 6k

Region k% 8k kg
1 0.0 ' 6.25x10~* 0.025
2 0.025 1.25x10°3 0.050
3 0.050 2.50x10~3 0.100
4 0.100 5.0x1073 0.200
5 0.200 1.0x10-2 1.200
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Table 6. Absorption coefficients x(\,T) of Eq. (12) in units

of cm®. The wavelengths ) are in pm, and the temperature T

in K. Numbers inside the parentheses indicate the power of 10.

T(K)

A(pm) 5000 10000 15000 20000 30000 50000
1.0 0.31(-40)  1.53(-39)  2.18(-39)  2.87(-39)  4.28(-39)  6.19(-39)
2.0 5.25(-39)  9.72(-30)  1.46(-38)  1.99(-38)  3.07(-38)  4.58(-38)
3.5 2.30(-38)  4.63(-38)  7.20(-38)  9.98(-38)  1.56(-37)  2.87(-37)
5.0 6.12(-38)  1.28(-37)  2.02(-37)  2.83(:37)  4.48(-37)  6.83(-37)
7.5 191(-37)  4.15(-37)  6.65(-37)  9.37(-37)  1.49(-36)  2.28(-36)

10.0 435(-37)  9.66(-37)  1.56(-36)  2.20(-36)  3.50(-36)  5.36(-36)

15.0 141(-36)  3.19(-36)  5.15(-36)  7.28(-36)  1.16(-35)  1.79(-35)

20.0 3.29(-36)  7.41(-36)  1.20(-35)  1.70(-35)  2.74(-35)  4.22(-35)

25.0 6.30(-36)  1.43(-35)  2.32(-35)  3.30(-35)  5.32(-35)  8.21(-35)

30.0 1.07(-35)  2.44(-35)  3.98(-35)  5.68(-35)  9.16(-35)  1.42(-34)
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Table 7. Emissivity coefficients J(A\,T) of Eq. (15) in units of W cm?®/pm-

steradian. The wavelengths ) are in units of pm, and the temperature T in K.

Numbers inside the parentheses indicate the power of 10.

T(K)

A(pm) 5000 10000 15000 20000 30000 - 50000
1.0 6.22(-37)  4.32(-36)  9.94(-36)  1.66(-35)  3.10(-35)  5.24(-35)
2.0 4.63(-37)  1.76(-36)  3.37(-36)  5.17(-36)  8.92(-36)  1.44(-35)
3.5° 2.30(-37)  6.96(-37)  1.24(-36)  1.84(-36)  3.09(-36)  4.88(-36)
5.0 1.31(-37)  3.66(-37)  6.37(-37)  9.35(-37)  1.55(-36)  2.43(-36)
7.5 6.53(-38)  1.72(-37)  2.94(-37)  4.28(-37) '  7.02(-37)  1.10(-36)

10.0 3.80(-38)  9.97(-38)  1.69(-37)  2.44(-37)  3.98(-37)  6.18(-37)

15.0 1.88(-38)  4.57(-38)  7.60(-38)  1.09(-37)  1.77(-37)  2.75(-37)

20.0 1.06(-38)  2.57(-38)  4.27(-38)  6.13(-38)  9.95(-38)  1.55(-37)

25.0 6.99(-39)  1.65(-38)  2.73(-38)  3.92(-38)  6.37(-38)  9.90(-38)

30.0 4.77(-39)  1.14(-38)  1.89(-38)  2.72(-38)  4.42(-38)  6.88(-38)

23




Table 8. Comparison of the absorption coefficients x(A,T) of Eq.(14) in
cm® with other theoretical works (G and JW) and with the experimental
values of Ref. [14]. Numbers inside the parentheses indicate the power of 10.

A(s)
2.0 3.5 5.0 10
Present
(T = 10,000K) 9.72(-39) 4.63(-38) 1.28(-37) 9.66(-37)
G(Ret.[5])
(T = 10,000K) 7.13(-39) 8.97(-38) 6.68(-37)
JW(Ref.[7])
(T = 9,700K) 9.6(-39) 4.67(-38) 1.31(-37)
Expt(Ref.[14])
(T=9,700K) 29.0(-39) 1.0(-38) 2.6(-37)
M)
1.14 1.52 2.28 4.56

Present

(T=5,000K) 1.2(-39) 2.5(-39) 7.3(-39) 4.9(-38)

JW(Ref.[7])

(T=5,040K) 1.09(-39) 2.28(-39) 6.60(-39) 4.38(-38)
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